当前位置:问答库>考研试题

2018年长江大学肿瘤学306西医综合之生物化学考研基础五套测试题

  摘要

一、名词解释

1. 抗维生素

【答案】抗维生素是指结构类似于维生素的结构,它们在体内与维生素竞争,而使维生素不能发挥作用的某些化合物。在研宄维生素缺乏病的过程中经常使用某些抗维生素来造成动物的维生素缺乏病。

2. 协同效应(cooperativity )。

【答案】协同效应是指一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象。如果是促进作用则称为正协同效应,如:带氧的Hb 皿基协助不带氧亚基结合氧;如果是抑制作用则称为负协同效应。

3. R 酶。

【答案】R 酶作用于α-及β-淀粉酶作用后剩下的极限糊精,分解α(1→6)糖苷键的酶。

4. 葡萄糖-丙氨酸循环。

【答案】葡萄糖-丙氨酸循环是一种氨的转运过程。在肌肉中,由酵解产生的丙酮酸在转氨酶的作用下,接受其他氨基酸的氨基形成丙氨酸,丙氨酸是中性无毒物质,通过血液到达肝脏,在谷丙转氨酶的作用下,将氮基移交or 酮戊二酸生成丙酮酸和谷氨酸。谷氨酸在谷氨酸脱氢酶的作用下脱去氨基,氮进入尿素合成途径,丙酮酸在肝细胞中异生为葡萄糖再运回至肌肉氧化供能。

5. 拼接体(spliceosome )。

【答案】拼接体是由mRNA 前体、各种拼接因子、5种snRNP 等在细胞核内按照一定次序组装起来的超分子复合物,是拼接反应发生的场所。

6.

复制叉

【答案】

复制叉是指复制时,

链上通过解旋、解链和

解旋,

同时合成新的蛋白的结合等过程形成链。 的Y

型结构。在复制叉处作为模板的双链

7. 酶活性的可逆磷酸化调节。

【答案】酶活性的可逆磷酸化调节是指通过蛋白激酶催化的将A TP 或CTP 的位磷酸基转移到

底物蛋白质氨基酸残基上以及在蛋白磷酸化酶催化下的逆过程,从而使酶蛋白在活性状态与非活性状态之间互变,来调节酶的活性

8. 氧化磷酸化。

【答案】氧化磷酸化是指在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成A TP 的作用。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成A TP 的主要方式。

二、问答题

9. 贮藏在2mol 和ATP 中的能量为活跃的化学能,通过Calvin 循环转化为稳定的化学能,贮藏在碳水化合物中,计算通过Calvin 循环的能量转化率。

【答案】光合作用的总平衡反应式为:

即,

同化

需18A TP ,

共需

葡萄糖氧化时能量转化率为2870/3189=90%。

10.一种氨基酸所对应的密码子种类数与这种氨基酸在蛋白质中出现的频率有何关系? 这种关系的优点是什么?

【答案】密码子种类较多的氨基酸在蛋白质中出现的频率也较高。密码子的简并性使碱基替换有可能不引起氨基 酸的替换,因此増大了突变在自然界得以保留的概率。

11.合成氨基酸的氮源和碳架可以从哪里获得?

【答案】合成氨基酸的氮可通过生物固氮、大气固氮、工业固氮转变为氨或硝酸盐,进入土壤,被植物吸收后用于氨基酸的合成。合成氨基酸的碳架直接或间接来自糖代谢、光合碳循环等过程中产生的酮酸及其他有机酸,如or 酮戊二酸、革酰乙酸、丙酮酸等。

12.写出真核mRNA 的帽子结构式。真核生物mRNA

的端有一段polyA ,端有一个“帽子”,“帽子”的结构特点是什么?比较原核mRNA 和真核mRNA 的区别。

【答案】mRNA

的帽子结构式如图所示。

图mRNA 的Y 帽子结构

端有一“帽子结构”

其特点为

端的鸟嘌呤被甲

基化,形成7-

甲基鸟苷

核苷的

(1

(2

)甲基鸟苷的核糖通过3

个磷酸残基与相邻的甲基

连接。这个帽子结构在mRNA 的翻译中可能有重要作用。 端无帽状结构存在。 端不含polyA 结构。 原核mRNA 和真核mRNA 有显著不同,表现在:

(3)—般为多顺反子结构,即一个mRNA 中常含有几个蛋白质信息,能指导几个蛋白质的生物合成,如MS2的mRNA 就含有A 蛋白基因、外壳蛋白基因、复制酶基因等三个基因。

(4)mRNA 代谢很快,代谢半衰期一般以秒计,很少达到lOmin 以上。

13.你如何解释以下现象:细菌调节嘧啶核苷酸合成的酶是天冬氨酸-氨甲酰转移酶,而人类调节调节嘧啶核苷酸合成的酶主要是氨甲酰磷酸合成酶。

【答案】氨甲酰磷酸合成酶参与两种物质的合成:嘧啶核苷酸的合成和精氨酸的合成(或尿素循环)。在细菌体 内,这两种物质的合成发生在相同的地方(细菌无细胞器),如果调节嘧啶核苷酸合成的酶是此酶的话,对嘧啶 核苷酸合成的控制将会影响到精氨酸的正常合成。而人细胞有两种氨甲酰磷酸合成酶,一种定位于线粒体内,参与尿素循环或精氨酸的合成,另一种定位于细胞质,参与嘧啶核苷酸合成。

14.脊椎动物细胞和植物细胞的DNA

上的胞嘧啶经常被甲基化形成

你认为这种系统存在于 含有5-甲基胞嘧啶的DNA 的细胞中有什么样的合理性?

【答案】5-甲基胞嘧啶可自发地发生脱氨基作用而转变成T 。如果这种情况在细胞中发生,则原来正常的G-C 碱基对就变成了错配的G-T 碱基对。假如这种错配的碱基对得不到纠正,则经过一轮DNA 复制,原来的G-C 碱 基对有可能转变为A-T 碱基对。如果细胞内有一种专门的能够识别错配G-T 碱基对并将它们修复为正常的G-C 碱基对的修复系统,则可以避免上述情况的发生。

15.常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么?

【答案】(1)鱼藤酮(rotenone )、阿米妥(amytal )以及杀粉蝶菌素A (piericidin-A ), 它们的作用是阻断电子由NADH 向辅酶Q 的传递。鱼藤酮是从热带植物(Deni?e/Z中rica )的根中提取出来的化合物,它能和NADH 脱氢酶牢固结合,因而能阻断呼吸链的电子传递。鱼藤酮对黄素蛋白不起作用,所以鱼藤酮可以用来鉴别NADH

呼吸链与

相竞争,从而抑制电子传递。

(2)抗霉素A (antimycin A)是从链霉菌分离出的抗菌素,它抑制电子从细胞色素b 到细胞

色素的传递作用。

(3)氰化物、一氧化碳、

叠氮化合物及硫化氢可以阻断电子由细胞色素

在相同的细胞内,发现有一种专门的能够识别错配G-T 碱基对并将它们修复为正常的G-C 碱基对的修复系统。呼吸链。阿米妥的作用与鱼藤酮相似,但作用较弱,可用作麻醉药。杀粉蝶菌素A 是辅酶Q 的结构类似物,由此可以与辅酶Q 向氧的传递作用,