当前位置:问答库>考研试题

2017年扬州大学物理科学与技术学院628量子力学考研强化模拟题

  摘要

一、简答题

1. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?

【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。

2. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

得出。表示力学量的算符组成完全系的本征函

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

3. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

4. 写出电子在外电磁场【答案】

中的哈密顿量。

5. 什么是定态?若系统的波函数的形式为处于定态?

问是否

【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.

6. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为

测不准关系为

7. 什么是塞曼效应?什么是斯达克效应?

【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。

8. 分别写出非简并态的一级、二级能量修正表达式。 【答案】

9. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数

已知:另一部分

很小,可以看作是加于

它的本征值

上的微扰. 写出在非简并

状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】

一级修正波函数为二级近似能量为其中

10.现有三种能级【答案】一维谐振子.

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

二、证明题

11.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

【答案】(1)证:对于厄米算符

所以即本征值为实

(2)证:因为而(3)因为

所以

即正交

具有周期性,

所以

设本征方程为

其中为本征值,上式可改写为

易解出即为厄米算符。

C 为积分常数,可由归一化条

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

12.设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为

【答案】设在

证明这一点。

表象中,这自旋态的表示为:

则由自旋x 分量和; y 分量算符的表本为:

根据题给条件,有:

由此得:

即角动量z 分量的本征值为是量子化的,相应本征函

再利用归一化条件可得